UGC Approved Journal No. 64664
Available Online: https://journal.scienceacad.com

Vol 20, No 01, January 2019 "14th-Conference"(IC-GAEMPSH)
 ISSN No.- 9726-001X
 UPPER BOUNDS FOR EIGEN VALUES OF LAPLACE OPERATOR ON MANIFOLD

Manju Yadav

Lecturer, Jayoti Vidyapeeth Women's University, Jaipur
Mnjyadav89@gmail.com

Abstract

In this paper, we are concerned with upper bounds of eigen-values on manifolds. Eigen-values have many applications in geometry and in other fields of mathematics. We develop a universal approach to upper bounds on both continuous and discrete structures based upon certain properties of the corresponding heat kernel. we start with a well-defined Laplace operator Δ on functions on M so that Δ is a self-adjoint operator in $L^{2}(M,+)$ with a discrete spectrum and a distance function $\operatorname{dist}(\mathrm{x}, \mathrm{y})$ on M .

Keywords: eigen-values, Laplace transform, heat equation, manifold

1 INTRODUCTION

In this paper, let us consider Laplace operator on smooth compact Riemannian manifold M, with metric g. since M has boundary $\partial \mathrm{M}$, then we require in addition that g vanishes at the boundary. This defines the Laplacian with drichilet boundary condition .the Laplace operator is a self-adjoint operator, so by spectrum theorem there is a sequence of eigenvalues

$$
0 \leq \lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots
$$

And an orthogonal basis $\phi_{1}, \phi_{2}, \ldots$ of $L^{2}(\mathrm{M})$, which are eigenfuntions of Laplace operator.

Laplacian Operator On Riemannian Manifold:

The laplacian operator on a Riemannian manifold (M, g) is a function defined as $\Delta_{\mathrm{g}}: \mathrm{C}^{\infty}(\mathrm{M}) \rightarrow \mathrm{C}^{\infty}(\mathrm{M})$
defined as $\Delta_{\mathrm{g}}=-\operatorname{div}_{\mathrm{g}} . \nabla_{\mathrm{g}}$
Since both ∇_{g} and $\operatorname{div}_{\mathrm{g}}$ are linear operators it follows that for any $\phi, \psi \in \mathrm{C}^{\infty}(\mathrm{M})$
$\Delta_{\mathrm{g}}(\phi+\psi)=\Delta_{\mathrm{g}} \phi+\Delta_{\mathrm{g}} \psi$.
in addition we have

$$
\Delta_{\mathrm{g}}(\phi \cdot \psi)=\psi \Delta_{\mathrm{g}} \phi+\phi \Delta_{\mathrm{g} \psi}-2\left\langle\Delta_{\mathrm{g}} \phi, \Delta_{\mathrm{g}} \psi\right\rangle
$$

Eigen Values of Laplace Operator On Manifold:

Let M be a smooth connected compact Riemannian manifold and Δ be a Laplace operator associated with the Riemannian metric i.e. in coordinates $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$

$$
\Delta u=\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x_{j}}\right)
$$

Where $g^{i j}$ are contra-variant components of the metric tensor and $g=\operatorname{det}\left\|g_{i j}\right\|$ and u is a smooth function on M .

Theorem: Suppose that we have chosen $\mathrm{k}+1$ disjoint subsets $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{K}+1}$ of M such that the distance between any pair of them is at least $\mathrm{D}>0$. Then for any $\mathrm{k}>$ 1

$$
\lambda_{k}-\lambda_{0} \leq \frac{1}{D^{2}} \max _{i \neq j}\left(\log \frac{4}{\int_{X_{i}} \phi_{0}{ }^{2} \int_{X_{j}} \phi_{0}{ }^{2}}\right)^{2}
$$

Proof: The proof is based upon two fundamental facts about the heat kernel $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{t}) \quad$ being by definition the unique fundamental solution to heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t} u(x, t)-\Delta u(x, t)=0 \tag{1}
\end{equation*}
$$

With the boundary condition

$$
\partial u+\beta \frac{\partial u}{\partial v}=0
$$

$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ can be written in the form

$$
\begin{equation*}
p(x, y, t)=\sum_{i=0}^{\infty} e^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y) \tag{2}
\end{equation*}
$$

For any two disjoint Boral sets $\mathrm{X}, \mathrm{Y} \subset \mathrm{M}$ where $\quad \mathrm{D}=\operatorname{dist}(\mathrm{X}, \mathrm{Y})$.

First we take the particular case k $=2$. We start with integrating the eigenvalue expansion (2) as follows

$$
\begin{equation*}
I(f, g) \equiv \int_{X} \int_{Y} P(x, y, t) f(x) g(y) \mu(d x) \mu(d y)=\sum_{i=0}^{\infty} e^{-\lambda_{i},} \int_{X} f \phi_{i} \int_{Y} g \phi_{i} \tag{4}
\end{equation*}
$$

Available Online: https://journal.scienceacad.com
Vol 20, No 01, January 2019 "14th-Conference"(IC-GAEMPSH)
ISSN No.- 9726-001X

Let us denote by f_{i} the Fourier coefficients of the function $f 1_{x}$ with respect to the frame $\left\{\phi_{i}\right\}$ and by g_{i} the Fourier coefficients of the function $g 1_{y}$.Then

Where we used the fact that
$\left|\sum_{i=1}^{\infty} e^{-\lambda_{i} t} f_{i} g_{i}\right| \leq e^{-\lambda_{1} t}\left(\sum_{i=1}^{\infty} f_{i}^{2} \sum_{i=1}^{\infty} g_{i}{ }^{2}\right)^{1 / 2}$
since

$$
e^{-\lambda_{1} t}\left(\sum_{i=1}^{\infty} f_{i}^{2} \sum_{i=1}^{\infty} g_{i}^{2}\right)^{1 / 2} \leq e^{-\lambda_{1} t}\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2}
$$

Putting into (3)-

$$
I(f, g) \leq\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2} \exp \left(-\frac{D^{2}}{4 t}-\lambda_{0} t\right)
$$

From (5)-

$$
\begin{gather*}
I(f, g) \geq e^{-\lambda_{0} t} f_{0} g_{0}-e^{-\lambda_{1} t}\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2} \\
e^{-\lambda_{0} t} f_{0} g_{0}-e^{-\lambda_{t} t}\left\|f 1_{X}\right\|_{2}\left\|1_{Y}\right\|_{2} \leq\left\|f 1_{X}\right\|_{2}\left\|1_{Y}\right\|_{2} \exp \left(-\frac{D^{2}}{4 t}-\lambda_{0} t\right) \\
-e^{-\lambda_{t} t}\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2} \leq-e^{-\lambda_{0} t} f_{0} g_{0}+\left\|f 1_{X}\right\|_{2}\left\|g_{Y}\right\|_{2} \exp \left(-\frac{D^{2}}{4 t}\right) e^{--k y t^{t} t} \\
e^{-\left(\lambda_{1}--_{0}\right)}\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2} \geq f_{0} g_{0}-\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2} \exp \left(-\frac{D^{2}}{4 t}\right) \quad \text { (7) } \tag{7}
\end{gather*}
$$

Let us choose

$$
t=\frac{\boldsymbol{D}^{2}}{4 \log \frac{2\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2}}{f_{\mathrm{o}} g o}}
$$

Putting into (7) we get:

$$
\begin{aligned}
& e^{-\left(\lambda_{1}-\lambda_{0}\right) t}\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2} \geq \frac{1}{2} f_{0} g_{0} \\
& -\left(\lambda_{1}-\lambda_{0}\right) t \geq \log \frac{f_{0} g_{0}}{2\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2}} \\
& \lambda_{1}-\lambda_{0} \leq \frac{1}{t} \log \frac{2\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2}}{f_{\mathrm{o}} g \mathrm{o}}
\end{aligned}
$$

Putting the value of t,

$$
\begin{equation*}
\lambda_{1}-\lambda_{0} \leq \frac{4}{D^{2}}\left(\log \frac{2\left\|f 1_{X}\right\|_{2}\left\|g 1_{Y}\right\|_{2}}{f_{0} g_{0}}\right)^{2} \tag{8}
\end{equation*}
$$

Finally, we choose $\mathrm{f}=\mathrm{g}=\mathrm{\phi}_{0}$ such that

$$
f_{\mathrm{o}}=\int_{X} f \phi_{\mathrm{O}}=\int_{X} \phi_{\mathrm{o}}^{2}
$$

And

$$
\left\|f 1_{X}\right\|_{2}=\left(\int_{X} \phi_{0}^{2}\right)^{1 / 2}=\sqrt{f_{0}}
$$

Similarly

$$
\begin{aligned}
& g_{0}=\int_{Y} g \phi_{0}=\int_{Y} \phi_{0}^{2} \\
& \left\|g 1_{Y}\right\|_{2}=\left(\int_{Y} \phi_{0}^{2}\right)^{1 / 2}=\sqrt{g_{0}}
\end{aligned}
$$

Putting into (8)

$$
\lambda_{1}-\lambda_{0} \leq \frac{4}{D^{2}}\left[\log \left(\frac{2 \sqrt{f_{0}} \sqrt{g_{0}}}{f_{0} g_{0}}\right)\right]^{2}
$$

This implies:

$$
\begin{equation*}
\lambda_{1}-\lambda_{0} \leq \frac{1}{D^{2}}\left(\log \frac{4}{\int_{X} \phi_{0}^{2} \int_{Y} \phi_{0}^{2}}\right)^{2} \tag{9}
\end{equation*}
$$

Now we turn to the general case $k>2$ let us consider a function $f(x)$ and denote by $f_{j} j$ the $i^{\text {th }}$ Fourier coefficient of the function f1 ${ }_{x}$ i.e.,

$$
\begin{gathered}
\boldsymbol{f}_{\boldsymbol{i}}^{\boldsymbol{j}}=\int_{X_{\boldsymbol{J}}} \boldsymbol{f} \boldsymbol{\phi}_{\boldsymbol{i}} \\
I_{l m}(f, f)=\int_{X_{l}} \int_{X_{m}} p(x, y, t) f(x) f(y) \mu(d x) \mu(d y)
\end{gathered}
$$

Then we have the upper bound for $I_{\operatorname{lm}}(f, f)$

$$
\begin{equation*}
I_{l m}(f, f) \leq\left\|f 1_{\mathrm{X}_{1}}\right\|_{2}\left\|f 1_{X_{m}}\right\|_{2} \exp \left(-\frac{D^{2}}{4 t}-\lambda_{0} t\right) \tag{10}
\end{equation*}
$$

While we rewrite the lower bound (5) in another way:
$I_{l m}(f, f) \geq e^{-\lambda_{l} f^{l}} f_{0}^{l} f_{0}^{m}+\sum_{i=1}^{k-1} e^{-\lambda_{0} t} f_{i}^{l} f_{i}^{m}-e^{-\lambda_{k^{l}}}\left\|f 1_{X_{1}}\right\|_{2}\left\|f 1_{X_{m}}\right\|_{2}$
Now we want to kill the middle term on the right-hand side (11) by choosing appropriate 1 and m.

Let us consider $\mathrm{k}+1$ vectors $\mathrm{fm}=$ $\left(\mathrm{f}_{1}{ }^{\mathrm{m}}, \mathrm{f}_{2} \mathrm{~m}, \ldots, \mathrm{f}_{\mathrm{k}-1^{m}}\right) \quad \mathrm{M}=1,2, \ldots, \mathrm{k}+1$ in $\mathrm{R}^{\mathrm{k}-1}$ and let us supply this (k-1)-dimensional space with a scalar product given by

$$
(v, w)=\sum_{i=0}^{k-2} v_{i} w_{i} e^{-\lambda_{i+1} t}
$$

Let us apply the following elementary fact: out of any $k+1$ vector in ($k-1$) dimensional Euclidean space there are always two vectors with non-negative scalar product. Therefore, we can find different 1 and m so that $\left(\mathrm{f}^{1}, \mathrm{f}^{\mathrm{m}}\right) \geq 0$ and due to this choice we

UGC Approved Journal No. 64664
Available Online: https://journal.scienceacad.com
Vol 20, No 01, January 2019 "14th-Conference"(IC-GAEMPSH)
ISSN No.- 9726-001X
are able to cancel the second term on the right hand side (11).

Comparing (10) and (11) we get
$e^{-\left(x_{k}-x_{0}\right)}\left\|\mid f f_{x_{1}}\right\|_{2}\left\|f 1_{x_{m}}\right\|_{2} \leq f_{0}^{\prime} f_{0}^{m}-\left\|f 1_{x_{1}}\right\|_{2}\left\|f 1_{x_{m}}\right\|_{2} \exp \left(-\frac{D^{2}}{4 t}\right) \quad(12)$
Now similar to the case $\mathrm{k}=2$ we choose t such that

$$
t=\min _{l \neq m} \frac{D^{2}}{4 \log \frac{2\left\|f 1_{x_{l}}\right\|_{2}\left\|f 1_{x_{m}}\right\|_{2}}{f_{\mathrm{o}}^{l} f_{\mathrm{o}}^{m}}}
$$

Putting the value of t into (12) we get,
$e^{-\left(\lambda_{k}-\lambda_{0}\right) t}\left\|f 1_{X_{l}}\right\|_{2}\left\|f 1_{X_{m}}\right\|_{2} \geq \frac{1}{2} f_{0}^{l} f_{0}^{m}$
Therefore,

$$
\lambda_{k}-\lambda_{\mathrm{o}} \leq \frac{1}{t} \log \frac{2\left\|f 1_{x_{l}}\right\|_{2}\left\|f 1_{X_{m}}\right\|_{2}}{f_{\mathrm{o}}^{l} f_{\mathrm{o}}^{m}}
$$

Putting the value of t,

$$
\begin{equation*}
\lambda_{k}-\lambda_{0} \leq \frac{4}{D^{2}} \max \left(\log \frac{2\left\|f 1_{X_{l}}\right\|_{l}\left\|f 1_{X_{m}}\right\|_{2}}{f_{0}^{l} f_{0}^{m}}\right)^{2} \tag{13}
\end{equation*}
$$

Now we taking $f=\varphi_{0}$ such that,

$$
f_{0}^{l}=\int_{X_{l}} f \phi_{0}=\int_{X_{l}} \phi_{0}^{2}
$$

And

$$
\left\|f 1_{x_{l}}\right\|_{2}=\left(\int_{x_{1}} \phi_{0}^{2}\right)^{1 / 2}=\sqrt{f_{\mathrm{o}}^{l}}
$$

Similarly

$$
\begin{gathered}
f_{0}^{m}=\int_{X_{m}} f \phi_{0}=\int_{X_{m}} \phi_{0}^{2} \\
\left\|f 1_{X_{m}}\right\|_{2}=\left(\int_{X_{m}}{\phi_{\mathrm{O}}^{2}}^{2}\right)^{1 / 2}=\sqrt{f_{\mathrm{o}}^{m}}
\end{gathered}
$$

Putting into (13) we get,
Thus for any two disjoint subset of M, we have
$\lambda_{k}-\lambda_{\mathrm{o}} \leq \frac{1}{D^{2}} \max _{l \neq m}\left(\log \frac{4}{\int_{X_{l}} \phi_{\mathrm{O}}{ }^{2} \int_{X_{m}} \phi_{\mathrm{O}}{ }^{2}}\right)^{2}$
What was to be proved.

$$
\lambda_{k}-\lambda_{0} \leq \frac{1}{D^{2}} \max _{i \neq j}\left(\log \frac{4}{\int_{X i}{\phi_{0}}^{2} \int_{X_{j}}{\phi_{0}}^{2}}\right)^{2}
$$

REFERENCES

1. F. R. K. CHUNG, A. GRIGOR’YAN, AND S.T. YAU, "Upper Bounds for Eigen values of the Discrete and Continuous Laplace Operators" advances in mathematics 117, 165-178 (1996) article no. 0006.
2. U. C. De, A. A. Shaikh, "Differential Geometry of Manifolds" Narosa Publishing House Pvt. Ltd. 2007
3. F. R. K. Chung, V. Faber and Thomas A. Manteuffel, On the diameter of a graph from eigenvalues associated with its Laplacian, SIAM J. Discrete Math. 7 (1994), 443-457.
4. E. B. Davies, Heat kernel bounds, conservation of probability and the Feller property,
5. J. Analyse Math. 58 (1992), 99_119.
